The modernization and industrialization are the two important outputs of twentieth century which have made human life more luxurious and comfortable. Simultaneously, they are responsible for voracious use of natural resources, exploitation of forests and wildlife, producing massive solid waste, polluting the scarce and sacred water resources and finally making our mother Earth ugly and inhospitable. Today, people are getting more familiar to the global issues like global warming, greenhouse effect, ozone depletion and climate change etc. Now, it is considered as a final call by mother Earth to walk on the path of sustainable development. The time has come to wake up, unite and combat together for sustainable environment.

Considering the present environmental problems of pollution and excess use of natural resources, Hon. Prime Minister, Shri. Narendra Modiji has declared the Mission of *Swachch Bharat Abhiyan*. Also, University Grants Commission has mentioned "*Green Campus*, *Clean Campus*" mission mandatory for all higher educational institutes. As environmental sustainability is becoming an increasingly important issue for the nation, the role of higher educational institutions in relation to environmental sustainability is more prevalent.

Green Audit is the most efficient ecological tool to solve such environmental problems. It is a process of regular identification, quantification, documenting, reporting and monitoring of environmentally important components in a specified area. Through this process the regular environmental activities are monitored within and outside of the concerned sites which have direct and indirect impact on surroundings. Green audit can be one of the initiative for such institutes to account their energy, water resource use as well as wastewater, solid waste, E-waste, hazardous waste generation. Green Audit process can play an important role in promotion of environmental awareness and sensetization about resource use. It can create consciousness towards ecological values and ethics. Through green audit one can get direction about how to improve the condition of environment.

Need of Green auditing:

Green auditing is the process of identifying and determining whether institutions practices are eco-friendly and sustainable. Traditionally, we are good and efficient users of natural resources. But over the period of time excess use of resources like energy, water, chemicals are become habitual for everyone especially, in common areas. Now, it is necessary to check whether our processes are consuming more than required resources? Whether we are handling waste carefully? Green audit regulates all such practices and gives an efficient way of natural resource utilization. In the era of climate change and resource depletion it is necessary to verify the processes and convert it in to green and clean one. Green

audit provides an approach for it. It also increases overall consciousness among the people working in institution towards an environment.

Goals of Green audit:

Institute has conducted a green audit with specific goals as:

- 1. Identification and documentation of green practices followed by institute.
- 2. Identify strength and weakness in green practices.
- 3. Conduct a survey to know the ground reality about green practices.
- 4. Analyze and suggest solution for problems identified from survey.
- 5. Assess facility of different types of waste management.
- 6. Increase environmental awareness throughout campus.
- 7. Identify and assess environmental risk.
- 8. Motivates staff for optimized sustainable use of available resources.
- 9. The long term goal of the environmental audit program is to collect baseline data of environmental parameters and resolve environmental issue before they become problem.

Objectives of Green audit:

- 1. To examine the current practices which can impact on environment such as of resource utilization etc.
- 2. To identify and analyze significant environmental issues.
- 3. Setup goal, vision and mission for Green practices in campus.
- 4. Establish and implement Environmental Management in various departments.
- 5. Continuous assessment for betterment in performance in green practices and its evaluation.

NAAC criteria VII Environmental Consciousness:

Colleges Institutes or Universities are playing a key role in development of human resources worldwide. Higher education institutes campus run various activities with aim to percolate the knowledge

along with practical dimension among the society. Likewise different technological problems higher education institutes also try to give solution for issues related to environment. Different types of evolutionary methods are used to assess the problem concerning environment. It includes Environmental Impact Assessment (EIA), Social Impact Assessment (SIA), Carbon Footprint Mapping, Green audit etc National Assessment and Accreditation Council (NAAC) which is a self governing organization that declares the institutions as Grade according to the scores assigned at the time of accreditation of the institution. Green Audit has become mandatory procedure for educational institutes under Criterion VII of NAAC. The intention of green audit is to upgrade the environmental condition inside and around the institution. It is performed by considering environmental parameters like water and wastewater accounting, energy conservation, waste management, air, noise monitoring etc. for making the institution more eco-friendly.

Students are the major strength of any academic institution. Practicing green actions in any educational institution will inculcate the good habit of caring natural resources in students. Many environmental activities like plantation and nurturing saplings and trees, Cleanliness drives, Bird watching camps, No vehicle day, Rain water harvesting, etc. will make the students good citizen of the country. Through Green Audit, higher educational institutions can ensure that they contribute towards the reduction of Global warming through Carbon Footprint reduction measures.

Benefits of Green Audit to an Educational Institute:

There are many advantages of green audit to an Educational Institute:

- 1. It would help to protect the environment in and around the campus.
- 2. Recognize the cost saving methods through waste minimization and energy conservation.
- 3. Find out the prevailing and forthcoming complications.
- 4. Empower the organization to frame a better environmental performance.
- 5. It portrays good image of institution through its clean and green campus.
- 6. Finally, it will help to built positive impression for through green initiatives the upcoming NAAC visit.

For the Green Audit study, Institute can be divided into three sectors which are as follows,

- a. Office rooms, staff rooms, cabins Sector A
- b. Class rooms, labs, hall- Sector B
- c. Gardens, building outsides- Sector C

Mainly covered area

- 1. Energy consumption audit
- 2. Water consumption audit
- 3. Carbon sequestration audit

Electricity Audit

Source of Electricity:-PoorvKshetraVidhyutVitran Company, Narsinghpur, Madhya-pradesh.

Connection Holder:-Principal, Govt. Girls College, Narsinghpur (M.P.) India.

IVRS No.:- N1260004551

Total Load Sanction by Electricity Board:-15 KW

Energy resources utilized by all the departments, support services and the administrative buildings of college campus. Major use of the energy is at office and classrooms. Electricity is supplied to the College campus by PoorvKshetraVidhyutVitran Company, Narsinghpur, Madhya-pradesh.

For electricity consumption, we assume that all the units do not work together on every working day. Due to proper ventilation and natural illumination, in the total work day, about 70% of the innovations are used. So average working hours of units are considered four hours. Beside this working hours of CCTV cameras are considered 24×7 .

1.1.1 Electricity consumptions

Table for the computation of energy consumption in sector A.

S.No.	Equipments	No. of	Watt	in Kilo	Total Energy	Total Energy Consumption
		Equipments	(each	watt	Consumption each	whole unit (working time
			unit)		unit (working time	average 4 hours daily and
					approx6	no. of working days 180) in

					hoursdaily) in Kilo	Kilo watt
					watt	
1	Computer	34	250	0.25	1.5	6120
2	Printer	3	200	0.2	1.2	432
3	Projector	4	150	0.15	0.9	432
4	Scanner	1	500	0.5	3	360
5	CCTV	14	15	0.015	0.09	151.2
6	Xerox-machine	3	1000	1	6	2160
7	Router	1	250	0.25	1.5	180
8	LED Light	6	20	0.02	0.12	86.4
9	LED TV	1	250	0.25	1.5	180
10	Alarm bell	2	100	0.1	0.6	144
11	Fridge	1	250	0.25	1.5	180
12	Air Conditioner	1	1500	1.5	9	1080
13	Ceiling Fan	86	250	0.25	1.5	15480
14	Exhaust Fan	1	250	0.25	1.5	180

Table for the computation of energy consumption in sector B.

S.No.	Equipments	No. of	Watt	in Kilo	Total Energy	Total Energy	
		Equipments	(each unit)	watt	Consumption each unit (working time approx6 hours daily)	Consumption whole unit (working time average 4 hours	
					in Kilo watt	daily and no. of	
						working days 180) in	
						Kilo watt	
1	Computer (Smart						
	Class Rooms)	3	250	0.25	1.5	540	
2	Projector (Smart						
	Class Rooms)	3	150	0.15	0.9	324	
3	CCTV	2	15	0.015	0.36	129.6	
4	LED Light	7	20	0.02	0.12	100.8	

5	LED TV	1	250	0.25	1.5	180
6	Ceiling Fan	15	250	0.25	1.5	2700
7	Exhaust Fan	1	250	0.25	1.5	180

Table for the computation of energy consumption in sector C.

S.No.	Equipments	No. Of Equipments	Watt (each unit)	in Kilo watt	Total Energy Consumption each unit (working time approx6 hours daily) in Kilo watt	Total Energy Consumption whole unit (working time average 4 hours daily and no. of working days 180) in Kilo watt
1	Water motor	2	1500	1.5	9	2160
2	Street Light	4	100	0.1	0.6	288
3	CCTV	10	15	0.015	0.09	648
4	LED Light	5	20	0.02	0.12	72

Total Energy Consumption (In kilowatt)

Sector	Total energy consumption (in Kilo watt)
Sector- A	27165.6
Sector-B	4154.4
Sector-C	2448

Institute consumes 33768 Kilowatt energy in whole academic year (working days 180).

Water and wastewater audit

Water which is precious natural resource available with fixed quantum. The availability of water is decreasing due to increasing population of nation, as per capita availability of utilizable water is going down. Due to ever rising standard of living of people, industrialization, urbanization, demand of fresh water is increasing day by day. The unabated discharge of industrial effluent in the available water bodies

is reducing the quality of these ample sources of water continuously. Hence, the national mission on water conservation was declared by the then Hon. Prime Minister Narendra Modi as 'Jal Shakti Abhiyan' and appealed to all citizens to collectively address the problem of water shortage, by conserving every drop of water and suggested for conducting water audit for all sectors of water use.

Water audit can be defined as a qualitative and quantitative analysis of water consumption to identify means of reducing, reusing and recycling of water. Water Audit is nothing but an effective measure for minimizing losses, optimizing various uses and thus, enabling considerable conservation of water in irrigation sector, domestic, power and industrial as well. A water audit is a technique or method which makes possible to identify ways of conserving water by determining any inefficiencies in the system of water distribution. The measurement of water losses due to different uses in the system or any utility is essential to implement water conservation measures in such an establishment.

3.1 Importance of Water Audit:

- Systematic process
- May yield some surprising results
- Easier to work on solutions when the problems are identified.
- A tracking mechanism can be put into place.

It is observed that a number of factors like climate, culture, food habits, work and working conditions, level and type of development, and physiology to determine the requirement of water. The community which has a population between 20,000 to 1,00,000 requires 100 to 150 liters per person (capita) per day. The communities with a population can consume over 1, 00,000 requires 150 to 200 liters person (capita) per day. As per the standards provided by WHO Regional office for South East Asia Schools require 2 liters per student for drinking; 5-10 liters per student if water-flushed toilets, Administration requires (Staff accommodation not included) 50 liters per person per day, Staff accommodation requires 30 liters per person per day and for sanitation purposes it depends on technology.

Institute has its own two bore wells and it is also source of water supply in college.

S.No.	Purpose	daily uses in litre (Approx)	yearly uses (180 working days) in Kilo litre
1	Drinking	3000	540
2	Labs	100	18

3	Toilets	1500	270
4	Wash basin	1000	180
5	Garden	1500	270
6	Water loss during	150	
	filling		27
7	Water loss during	100	
	discharge		18
8	Others	100	18

Total yearly water uses (Sector A + Sector B + Sector C) = 1341 kilo liter

A water audit is an on-site survey and assessment to determine and improve efficiency of water use. The water used at bathrooms, toilets, gardenand other uses as well as leakages and over flow of water from overhead tanks is also been evaluated. The total use of water is 7.45 kilo liters/day.

Recycling of water:

Wastewater recycling was considered as the best option of water usage. Underlining this fact this recycled water is used for the garden and campus beautification through drip lines across the gardens.

Carbon Sequestration and Green cover inventory

Carbon is the basis of life on mother Earth. It is incorporated into the plants through photosynthesis, consumed by animal species through the food, present in the form of carbon dioxide (CO₂) the atmosphere, locked into the rocks as limestone and compressed into the different fossil fuels such as coal and oil. As CO₂level in the atmosphere continue to increase, most climate designs or project that the oceans of the world and trees will keep soaking up more than half CO₂. The plants on land and in the sea, taken up carbon by over many years increased the percentage discharged during decay, and this increased carbon became locked away as fossil fuels beneath the surface of the planet.

The starting of the 21st century brought growing concern about global warming, climate change, food security, poverty and population growth. In the 21st century more carbon has been released into the atmosphere than that has been absorbed. CO₂ is a principle component causing global warming. Atmospheric carbon dioxide levels have increased to 40 % from preindustrial levels to more than 390 parts per million CO₂. On this background it is a need of time to cover the research areas interrelated with climate change.

The "Carbon Sequestration and Green cover inventory" is a current status of tree cover and vegetation carbon storage assessment of area under Govt. Girls College, campus. In an era of climate change and global warming carbon emission, carbon footprints, carbon sequestration, adaptations, mitigation are the keywords in academia. Carbon sequestration is a process of converting atmospheric carbon i.e. CO₂ in to other sinks of carbon such as vegetation, soil, ocean etc. in various forms to mitigate global warming audit is one of the important clauses of Kyoto Protocol.

3.1 Carbon Sequestration

3.1.1 Need of study

It is a social and environmental responsibility of Government Institutes, Universities, National and International Organizations to respond positively for various global issues at local level and should percolate the generated knowledge in to the society. Global warming and climate change are current environmental issues need to be addressed scientifically and efficiently. As College are provided with skilful human resource supported by analytical infrastructure, it is our duty to bring such ideas in practice. While understanding the call of time the College has decided to enumerate the green cover of college campus and quantify the carbon sequestration of existing tree population.

3.1.2 Objectives:

- i. To study woody green cover of College campus.
- ii. To study species diversity of woody vegetation in the College campus.
- iii. To understand biomass and carbon stock accumulated by woody vegetation in the College campus.
- iv. To explore carbon sequestration potential of woody vegetation in the College campus.
- v. To explore potential of woody vegetation of the College campus as an oxygen source.
- vi. To measure canopy cover of the trees on the College campus.

3.1.3.3 Data Analysis:

All the collected data was tabulated and analyzed with the help of MS- Excel spreadsheets and objected findings were extracted by using various factors given by Intergovernmental Panel on Climate Change (IPCC). All the tabulated data is analyzed by following standard formulae.

A. Measurement of circumference of the tree:

To estimate the biomass of the each individual tree species non- destructive method was used. To calculate the circumference Diameter at Breast Height (DBH) can be determined by measuring tree Girth at Breast Height (GBH), approximately at 1.3 meter from the ground. The Girth at Breast Height of trees having diameter which greater than 10 centimeters were measured directly by measuring tape.

B. Height measurement:

Tree height is the important factor for the calculating tree biomass and evaluating tree life history. There are number of different methods which are used for the measurement of tree heights from the ground. For the present tree census, the height of individual tree is measured by visual method.

C. Above Ground Biomass (ABG) of tree:

The above ground biomass is the most abundant and visible pool of carbon in its all the forms. The above ground biomass of tree includes branches, stem, fruit, whole shoot and flowers.

The specific wood density is used from the standard guidelines. By using the above formula the AGB of all the tree species were calculated. The total above ground biomass is calculated by using the formulae.

D. Estimation of carbon:

Generally, in any plant species the 50 % of its biomass is considered as the carbon.

E. Determination of weight of carbon dioxide (CO_2) sequestrated in the tree:

Trees are the autotrophy, which make their own food by using photosynthesis. They took CO_2 and release O_2 . The sequestrated CO_2 is calculated by using the Carbon Sequestration Factor is used given by the standard guidelines by IPCC.

3.1.4 Carbon dioxide absorb and Oxygen released

Total Carbon Sequestrate in campus are 112.75 ton per year. Woody vegetation in college campus has released 300.72 tons of oxygen in their lifetime till date. Released oxygen is directly proportional to CO_2 sequestrate in the ratio of 32/12.

S.No	No	Height (in Ft.)	Diameter (in inch.)	Wabove- ground (in pond)	Wtotal green weight include roots (in pond)	Total Dry Weight	Carbon	CO2 sequestered	CO2 sequestered per year
1	T-150	15	8	240	288	208.8	104.4	383.148	38.31
2	T-102	12	9	243	291.6	211.41	105.705	387.937	38.79
3	T-15	15	10	375	450	326.25	163.125	598.669	59.87
4	T-66	15	10	375	450	326.25	163.125	598.669	59.87
5	T-134	12	10	300	360	261	130.5	478.935	47.89
6	T-3	15	12	324	388.8	281.88	140.94	517.25	51.72
7	T-53	12	12	259.2	311.04	225.504	112.752	413.8	41.38
8	T-57	20	12	432	518.4	375.84	187.92	689.666	68.97
9	T-69	15	12	324	388.8	281.88	140.94	517.25	51.72
10	T-80	20	12	432	518.4	375.84	187.92	689.666	68.97
11	T-89	10	12	216	259.2	187.92	93.96	344.833	34.48
12	T-104	12	12	259.2	311.04	225.504	112.752	413.8	41.38
13	T-117	20	12	432	518.4	375.84	187.92	689.666	68.97
14	T-141	12	12	259.2	311.04	225.504	112.752	413.8	41.38
15	T-147	30	12	648	777.6	563.76	281.88	1034.5	103.45
16	T-153	20	12	432	518.4	375.84	187.92	689.666	68.97
17	T-158	15	12	324	388.8	281.88	140.94	517.25	51.72
18	T-168	10	12	216	259.2	187.92	93.96	344.833	34.48
19	T-178	20	12	432	518.4	375.84	187.92	689.666	68.97
20	T-20	12	15	405	486	352.35	176.175	646.562	64.66
21	T-21	20	15	675	810	587.25	293.625	1077.6	107.76

22	T-39	12	16	460.8	552.96	400.896	200.448	735.644	73.56
23	T-43	20	16	768	921.6	668.16	334.08	1226.07	122.61
24	T-52	30	17	1300.5	1560.6	1131.435	565.7175	2076.18	207.62
25	T-86	20	17	867	1040.4	754.29	377.145	1384.12	138.41
26	T-110	30	17	1300.5	1560.6	1131.435	565.7175	2076.18	207.62
27	T-173	20	17	867	1040.4	754.29	377.145	1384.12	138.41
28	T-177	20	17	867	1040.4	754.29	377.145	1384.12	138.41
29	T-67	25	18	1215	1458	1057.05	528.525	1939.69	193.97
30	T-81	20	18	972	1166.4	845.64	422.82	1551.75	155.17
31	T-84	20	18	972	1166.4	845.64	422.82	1551.75	155.17
32	T-85	16	18	777.6	933.12	676.512	338.256	1241.4	124.14
33	T-107	40	18	1944	2332.8	1691.28	845.64	3103.5	310.35
34	T-108	15	18	729	874.8	634.23	317.115	1163.81	116.38
35	T-115	25	18	1215	1458	1057.05	528.525	1939.69	193.97
36	T-124	25	18	1215	1458	1057.05	528.525	1939.69	193.97
37	T-131	30	18	1458	1749.6	1268.46	634.23	2327.62	232.76
38	T-132	30	18	1458	1749.6	1268.46	634.23	2327.62	232.76
39	T-133	12	18	583.2	699.84	507.384	253.692	931.05	93.10
40	T-143	30	18	1458	1749.6	1268.46	634.23	2327.62	232.76
41	T-151	25	18	1215	1458	1057.05	528.525	1939.69	193.97
42	T-165	20	18	972	1166.4	845.64	422.82	1551.75	155.17
43	T-167	30	18	1458	1749.6	1268.46	634.23	2327.62	232.76
44	T-44	15	20	900	1080	783	391.5	1436.81	143.68
45	T-111	35	21	2315.25	2778.3	2014.2675	1007.134	3696.18	369.62
46	T-98	50	22	3630	4356	3158.1	1579.05	5795.11	579.51
47	T-28	20	24	1728	2073.6	1503.36	751.68	2758.67	275.87

48	T-51	15	24	1296	1555.2	1127.52	563.76	2069	206.90
49	T-54	40	24	3456	4147.2	3006.72	1503.36	5517.33	551.73
50	T-55	25	24	2160	2592	1879.2	939.6	3448.33	344.83
51	T-64	20	24	1728	2073.6	1503.36	751.68	2758.67	275.87
52	T-65	50	24	4320	5184	3758.4	1879.2	6896.66	689.67
53	T-83	50	24	4320	5184	3758.4	1879.2	6896.66	689.67
54	T-87	25	24	2160	2592	1879.2	939.6	3448.33	344.83
55	T-99	40	24	3456	4147.2	3006.72	1503.36	5517.33	551.73
56	T-100	40	24	3456	4147.2	3006.72	1503.36	5517.33	551.73
57	T-109	20	24	1728	2073.6	1503.36	751.68	2758.67	275.87
58	T-114	40	24	3456	4147.2	3006.72	1503.36	5517.33	551.73
59	T-122	30	24	2592	3110.4	2255.04	1127.52	4138	413.80
60	T-127	35	24	3024	3628.8	2630.88	1315.44	4827.66	482.77
61	T-128	20	24	1728	2073.6	1503.36	751.68	2758.67	275.87
62	T-129	40	24	3456	4147.2	3006.72	1503.36	5517.33	551.73
63	T-130	35	24	3024	3628.8	2630.88	1315.44	4827.66	482.77
64	T-137	40	24	3456	4147.2	3006.72	1503.36	5517.33	551.73
65	T-145	50	24	4320	5184	3758.4	1879.2	6896.66	689.67
66	T-170	25	24	2160	2592	1879.2	939.6	3448.33	344.83
67	T-175	30	24	2592	3110.4	2255.04	1127.52	4138	413.80
68	T-182	20	24	1728	2073.6	1503.36	751.68	2758.67	275.87
69	T-7	20	26	2028	2433.6	1764.36	882.18	3237.6	323.76
70	T-47	40	26	4056	4867.2	3528.72	1764.36	6475.2	647.52
71	T-23	40	27	4374	5248.8	3805.38	1902.69	6982.87	698.29
72	T-34	30	27	3280.5	3936.6	2854.035	1427.018	5237.15	523.72
73	T-49	30	27	3280.5	3936.6	2854.035	1427.018	5237.15	523.72

74	T-91	30	27	3280.5	3936.6	2854.035	1427.018	5237.15	523.72
75	T-26	15	28	1764	2116.8	1534.68	767.34	2816.14	281.61
76	T-48	30	28	3528	4233.6	3069.36	1534.68	5632.28	563.23
77	T-113	25	29	3153.75	3784.5	2743.7625	1371.881	5034.8	503.48
78	T-12	30	30	4050	4860	3523.5	1761.75	6465.62	646.56
79	T-32	30	30	4050	4860	3523.5	1761.75	6465.62	646.56
80	T-61	24	30	3240	3888	2818.8	1409.4	5172.5	517.25
81	T-68	50	30	6750	8100	5872.5	2936.25	10776	1077.60
82	T-73	50	30	6750	8100	5872.5	2936.25	10776	1077.60
83	T-88	55	30	7425	8910	6459.75	3229.875	11853.6	1185.36
84	T-101	40	30	5400	6480	4698	2349	8620.83	862.08
85	T-106	35	30	4725	5670	4110.75	2055.375	7543.23	754.32
86	T-112	40	30	5400	6480	4698	2349	8620.83	862.08
87	T-125	40	30	5400	6480	4698	2349	8620.83	862.08
88	T-144	50	30	6750	8100	5872.5	2936.25	10776	1077.60
89	T-146	50	30	6750	8100	5872.5	2936.25	10776	1077.60
90	T-149	60	30	8100	9720	7047	3523.5	12931.2	1293.12
91	T-156	30	30	4050	4860	3523.5	1761.75	6465.62	646.56
92	T-157	60	30	8100	9720	7047	3523.5	12931.2	1293.12
93	T-171	40	30	5400	6480	4698	2349	8620.83	862.08
94	T-174	40	30	5400	6480	4698	2349	8620.83	862.08
95	T-181	22	30	2970	3564	2583.9	1291.95	4741.46	474.15
96	T-138	60	32	9216	11059.2	8017.92	4008.96	14712.9	1471.29
97	T-154	70	32	10752	12902.4	9354.24	4677.12	17165	1716.50
98	T-116	40	33	6534	7840.8	5684.58	2842.29	10431.2	1043.12
99	T-59	30	34	5202	6242.4	4525.74	2262.87	8304.73	830.47

100	T-1	20	35	3675	4410	3197.25	1598.625	5866.95	586.70
101	T-2	20	36	3888	4665.6	3382.56	1691.28	6207	620.70
102	T-4	20	36	3888	4665.6	3382.56	1691.28	6207	620.70
103	T-8	25	36	4860	5832	4228.2	2114.1	7758.75	775.87
104	T-25	40	36	7776	9331.2	6765.12	3382.56	12414	1241.40
105	T-35	20	36	3888	4665.6	3382.56	1691.28	6207	620.70
106	T-37	40	36	7776	9331.2	6765.12	3382.56	12414	1241.40
107	T-60	45	36	8748	10497.6	7610.76	3805.38	13965.7	1396.57
108	T-62	30	36	5832	6998.4	5073.84	2536.92	9310.5	931.05
109	T-70	40	36	7776	9331.2	6765.12	3382.56	12414	1241.40
110	T-77	50	36	9720	11664	8456.4	4228.2	15517.5	1551.75
111	T-78	50	36	9720	11664	8456.4	4228.2	15517.5	1551.75
112	T-90	30	36	5832	6998.4	5073.84	2536.92	9310.5	931.05
113	T-96	60	36	11664	13996.8	10147.68	5073.84	18621	1862.10
114	T-119	30	36	5832	6998.4	5073.84	2536.92	9310.5	931.05
115	T-123	40	36	7776	9331.2	6765.12	3382.56	12414	1241.40
116	T-126	35	36	6804	8164.8	5919.48	2959.74	10862.2	1086.22
117	T-135	50	36	9720	11664	8456.4	4228.2	15517.5	1551.75
118	T-139	65	36	12636	15163.2	10993.32	5496.66	20172.7	2017.27
119	T-140	50	36	9720	11664	8456.4	4228.2	15517.5	1551.75
120	T-155	30	36	5832	6998.4	5073.84	2536.92	9310.5	931.05
121	T-159	50	36	9720	11664	8456.4	4228.2	15517.5	1551.75
122	T-160	70	36	13608	16329.6	11838.96	5919.48	21724.5	2172.45
123	T-172	30	36	5832	6998.4	5073.84	2536.92	9310.5	931.05
124	T-176	30	36	5832	6998.4	5073.84	2536.92	9310.5	931.05
125	T-179	12	36	2332.8	2799.36	2029.536	1014.768	3724.2	372.42

126	T-180	42	36	8164.8	9797.76	7103.376	3551.688	13034.7	1303.47
127	T-10	25	38	5415	6498	4711.05	2355.525	8644.78	864.48
128	T-36	20	39	4563	5475.6	3969.81	1984.905	7284.6	728.46
129	T-33	20	40	4800	5760	4176	2088	7662.96	766.30
130	T-120	40	40	9600	11520	8352	4176	15325.9	1532.59
131	T-13	40	41	10086	12103.2	8774.82	4387.41	16101.8	1610.18
132	T-14	40	41	10086	12103.2	8774.82	4387.41	16101.8	1610.18
133	T-46	40	42	10584	12700.8	9208.08	4604.04	16896.8	1689.68
134	T-118	40	42	10584	12700.8	9208.08	4604.04	16896.8	1689.68
135	T-121	20	42	5292	6350.4	4604.04	2302.02	8448.41	844.84
136	T-152	60	42	15876	19051.2	13812.12	6906.06	25345.2	2534.52
137	T-162	70	42	18522	22226.4	16114.14	8057.07	29569.4	2956.94
138	T-17	25	43	6933.75	8320.5	6032.3625	3016.181	11069.4	1106.94
139	T-24	40	43	11094	13312.8	9651.78	4825.89	17711	1771.10
140	T-45	20	45	6075	7290	5285.25	2642.625	9698.43	969.84
141	T-50	30	45	9112.5	10935	7927.875	3963.938	14547.7	1454.77
142	T-11	40	46	12696	15235.2	11045.52	5522.76	20268.5	2026.85
143	T-27	20	46	6348	7617.6	5522.76	2761.38	10134.3	1013.43
144	T-42	40	48	13824	16588.8	12026.88	6013.44	22069.3	2206.93
145	T-63	40	48	13824	16588.8	12026.88	6013.44	22069.3	2206.93
146	T-92	60	48	20736	24883.2	18040.32	9020.16	33104	3310.40
147	T-97	30	48	10368	12441.6	9020.16	4510.08	16552	1655.20
148	T-136	40	48	13824	16588.8	12026.88	6013.44	22069.3	2206.93
149	T-142	70	48	24192	29030.4	21047.04	10523.52	38621.3	3862.13
150	T-161	70	48	24192	29030.4	21047.04	10523.52	38621.3	3862.13
151	T-163	70	48	24192	29030.4	21047.04	10523.52	38621.3	3862.13

152	T-164	70	48	24192	29030.4	21047.04	10523.52	38621.3	3862.13
153	T-166	70	48	24192	29030.4	21047.04	10523.52	38621.3	3862.13
154	T-169	40	48	13824	16588.8	12026.88	6013.44	22069.3	2206.93
155	T-6	35	50	13125	15750	11418.75	5709.375	20953.4	2095.34
156	T-30	40	50	15000	18000	13050	6525	23946.8	2394.68
157	T-38	40	50	15000	18000	13050	6525	23946.8	2394.68
158	T-56	42	50	15750	18900	13702.5	6851.25	25144.1	2514.41
159	T-5	20	51	7803	9363.6	6788.61	3394.305	12457.1	1245.71
160	T-22	50	52	20280	24336	17643.6	8821.8	32376	3237.60
161	T-72	45	53	18960.75	22752.9	16495.853	8247.926	30269.9	3026.99
162	T-94	60	54	26244	31492.8	22832.28	11416.14	41897.2	4189.72
163	T-58	40	54	17496	20995.2	15221.52	7610.76	27931.5	2793.15
164	T-93	60	54	26244	31492.8	22832.28	11416.14	41897.2	4189.72
165	T-29	38	56	17875.2	21450.24	15551.424	7775.712	28536.9	2853.69
166	T-41	40	57	19494	23392.8	16959.78	8479.89	31121.2	3112.12
167	T-16	35	58	17661	21193.2	15365.07	7682.535	28194.9	2819.49
168	T-18	45	60	24300	29160	21141	10570.5	38793.7	3879.37
169	T-19	48	60	25920	31104	22550.4	11275.2	41380	4138.00
170	T-31	40	60	21600	25920	18792	9396	34483.3	3448.33
171	T-40	40	60	21600	25920	18792	9396	34483.3	3448.33
172	T-71	55	60	29700	35640	25839	12919.5	47414.6	4741.46
173	T-76	60	60	32400	38880	28188	14094	51725	5172.50
174	T-79	60	60	32400	38880	28188	14094	51725	5172.50
175	T-82	65	60	35100	42120	30537	15268.5	56035.4	5603.54
176	T-95	80	60	43200	51840	37584	18792	68966.6	6896.66
177	T-103	65	60	35100	42120	30537	15268.5	56035.4	5603.54

178	T-105	70	60	37800	45360	32886	16443	60345.8	6034.58
179	T-148	70	60	37800	45360	32886	16443	60345.8	6034.58
180	T-75	40	72	31104	37324.8	27060.48	13530.24	49656	4965.60
181	T-9	40	78	36504	43804.8	31758.48	15879.24	58276.8	5827.68
182	T-74	50	96	69120	82944	60134.4	30067.2	110347	11034.66

Prepared By Dr. Animesh Gupta

Criteria I/C

Dr. Mandakani Bharadwaj

Principal प्राचार्य श्रामा.मु महिला महाविद्यालय नरसिहपुर